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COMPLEX SIGNALS PARAMETERS OPTIMIZATION ON THE BASE
OF LINEAR APPROXIMATIONS USING THE GRADIENT METHOD AND
NEWTON’S METHOD

The article examines the effectiveness of the gradient descent and Newton methods for optimizing the parameters
of ensembles of complex signals. Algorithms have been developed and implemented that increase the accuracy of
setting parameters and ensure reasonable optimization of spectral, temporal and statistical characteristics of signals.
The effectiveness of the application of the methods was confirmed experimentally on the example of reducing the error
and increasing the level of immunity. The obtained results substantiate the improvement of the parameters of complex
signals, which proves the efficiency of use for wireless telecommunication systems in order to ensure stable and reliable
operation in conditions of dynamic changes in the environment and a high level of interference.

The article compares the mathematical methods of optimization, namely the gradient method and Newton's
method, proposes mathematical models and constructs algorithms that empirically prove the effectiveness of the
application of the studied mathematical methods in the specified scientific area - for optimizing the parameters of
ensembles of complex signals. Scientific works [1-6, 9, 12] present algorithms based on the gradient method and
Newton's method, but they do not consider in detail the comparative analysis of the effectiveness of these methods for
optimizing the parameters of ensembles of complex signals for implementation in various scientific and practical tasks.
The effectiveness of the algorithms proposed in the article was confirmed experimentally, which made it possible to
reduce the error and improve the characteristics of ensembles of complex signals.

As a result of the experiments using the methods of gradient descent and Newton, a significant reduction of the
error and an improvement of the stability of the signals were achieved. Newton's method reduced the error from 0.1 to
0.0027, justifying the high accuracy of setting the signal parameters. The gradient descent method provided a stable
reduction of the gradient norm from 12.75 to less than 1.23, effectively reducing the interference level, i.e. increasing
the interference immunity.

Keywords: linear approximations, ensembles of complex signals, gradient method, Newton's method, gradient
norm, objective function, optimization of signal parameters, iterative algorithm, noise immunity.

INTRODUCTION
Researching gradient descent and Newton's methods The application of these methods can significantly
is relevant for optimizing the parameters of complex ~€nhance the noise immunity of complex signal ensembles,
signal ensembles because these methods provide high ~Which is critical for the functioning of wireless

accuracy and efficiency in tuning spectral, temporal, and ~ telecommunications systems. In the face of constant
statistical characteristics of signals [1-13]. environmental changes and the presence of various

interferences and obstacles,
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these systems require reliable and stable operation, which
can be achieved by optimizing signal parameters using
adaptive algorithms such as gradient descent and
Newton's method.

Solving the problem of optimizing the parameters of
complex signal ensembles is essential for ensuring the
efficiency and reliability of modern  wireless
telecommunication systems.

The object of study is the process of optimizing the
parameters of complex signal ensembles with given
parameters.

The subjects of study are the algorithms and
methods of optimization, particularly gradient descent and
Newton's methods.

The purpose of this work is to evaluate the
effectiveness of gradient descent and Newton's methods,
as well as their comparative analysis with the Nelder-
Mead method for optimizing the parameters of complex
signal ensembles.

1 PROBLEM STATEMENT

In practice, alongside the Nelder-Mead method,
which is based on a direct search algorithm and the use of
a simplex to determine the main direction towards the
minimum point, the gradient method is also used in
scientific research. This method is an iterative search
method based on the use of the gradient of the objective
function to determine the optimal direction of movement.
The gradient method can be effectively used to optimize a
wide range of parameters of complex signal ensembles, in
particular, the signal's spectral density to meet certain
specified criteria such as [1, 3, 5]:

— ensemble properties of signals, namely:
mean value, dispersion, and autocorrelation
parameters;

— signal noise immunity properties,
specifically: uniform energy distribution across
frequencies or resistance to various types of
interference;

— spectral characteristics of signals, such
as the presence or absence of certain frequency
components.

Additionally, the gradient method can be applied to
optimize the temporal characteristics of complex
ensemble formations:

— optimization of parameters such as time
shift and pulse length, allowing control over the
temporal structure of complex signals and
facilitating synchronization and other aspects of
data transmission;

— application of various «window
functions», enabling the modification of signal
waveforms, thereby reducing visual artifacts or
other unwanted effects that may arise during
operation and impact signal quality;

— optimization of signal filters to
effectively remove frequencies that cause
interference and disruptions or create artifacts,
thereby significantly improving the overall
quality and performance of the system.

Additional examples of using the gradient method
for optimizing the parameters of complex signal
ensembles include:

— optimization of modulation parameters:
allows improving information transmission by
adjusting the amplitude, frequency, or phase
characteristics of signals to achieve better
accuracy and resistance to interference;

— enhancing the energy efficiency of
signals: by optimizing the energy characteristics
of signals, the gradient method can help reduce
the system's power consumption, which is
critically important for the operation of wireless
systems;

— improvement of signal synchronization:
ensuring precise alignment of signals in time,
which is essential for coherent signal processing
and avoiding timing errors in communication
systems;

— adaptive beamforming in antenna
arrays: optimizing the directionality and
strength of signal transmission to improve
reception quality and reduce the impact of
interference from unwanted directions.

The preliminary stage of the gradient method
algorithm is the determination of the objective function,
which takes place before the start of the iterative
optimization process. For this, it is necessary to define an
objective function f{x) that, for example, evaluates the
distance between the parameter vectors of spectral
density, the target density x _target _target, and the

robustness density x _robust . Mathematically, the
formula will be as follows [1, 2]:
filx)= ”-r_ Xtarg pr”- +llx - X robust I

@

where || || — Euclidean norm;

X, X arger: Trobuse — SPECtral density vectors.
Based on this, the gradient of the objective function

will have the form [4,5]:
8f (x) _E{Ir:rg et — X)

VF@x) = ( ........ ) o @
9f (xm) —2(Xropus — ¥

2 REVIEW OF THE LITERATURE

The works [1-13] analyzed within this study are
devoted to the theoretical foundations and practical
applications of various aspects of optimizing the
parameters of complex signals using linear
approximations with gradient descent and Newton's
methods. Significant results have been achieved in all
these studies, which enhance the understanding of the
practical efficiency of different optimization methods.
The studies [1, 4-6] found that the gradient method is
effective for optimizing the spectral characteristics of
signals, as well as for solving problems of pattern
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recognition and source localization. For example, it has
been established that this method reduces errors in pattern
recognition and improves localization accuracy.

In the studies [2, 3, 5, 6, 13], the practical
application of the Newton method justified that this
method provides faster convergence compared to gradient
descent, especially when optimizing the parameters of
signal ensembles. It was found that the Newton method
can significantly reduce the number of iterations needed
to achieve an optimal solution.

The studies [7, 8] empirically confirmed the
effectiveness of optimizing filter parameters using the
Nelder-Mead and Levenberg-Marquardt algorithms. The
differential evolution algorithm considered in [8] also
showed high efficiency in optimizing synthesized signals,
which in practice ensures high accuracy and stability of
scientific results.

In the studies [9, 10, 11], specific methods and
approaches for optimizing signals and processes were
investigated. For example, [9] found that the process of
signal separation based on a first-order linear complex
autoregressive process is effective for improving signal
quality. In [10], the feasibility of using polynomials with
hybrid gradient descent and Newton's method was
confirmed, which improves the convergence and accuracy
of optimization. The study [11] showed that using
Bregman distances for regularizing the gradient of the
Newton method enhances the stability of the algorithm.

Through the analysis in study [12], the optimal total
throughput for SWIPT NOMA systems was identified.
This can be used to improve the efficiency of wireless
telecommunication systems.

The use of the proposed methods will improve the
signal characteristics and ensure a high level of noise
immunity and performance in complex dynamic
telecommunication systems that require high reliability
and adaptation to changing environmental conditions.

3 MATERIALS AND METHODS

The general algorithm of the gradient method is
presented in Fig. 1 (without the stage of determining the
objective function [7, 9]).

Starting point
XD={XD1.XD . ) :J

Calculating a Xng,, point
Xnew™Xolg~aVI(Xg1q)
when a - step,

Vi(x) - the gradient at a point x

X0 %new

Fig. 1 — Optimization algorithm based on gradients

The generalized approach to adjusting the
parameters of the gradient-based method for optimizing
the signal's spectral density is presented in Table 1.

Table 1
An example of the algorithm for changing
parameters based on gradients

Iteration Calculation Parameter Values
1
0 o *o = {L)
1 1 _ /0.5 _ 0.5
0= (L)_??Ff{xl}]_ {05) 0= (05)
2 _ /05y ~ 70,25 — /0,35
*2 _{0.5) =—Vf(x) = (0.25) *z _{0.25)
n .= (x#] _ (x#_L - nf’f{xn_lJJ .= (x#]
"Nyt M V(o) " g

Starting with an initial value =, = (1,1} , we then
determine the gradient of the objective function. In the
next step, we calculate a new point x,.,, with the
condition that each such new point becomes the current
value for the next iteration, and the iteration counter
increases at each step of the algorithm. It is mandatory to
check the stopping condition of the algorithm during the
computation, specifically: if the norm of the gradient is

less than or equal to the given threshold ¢, the algorithm
stops.

4 EXPERIMENTS

Fig. 2 and Fig. 3 show an example of applying
gradient-based  optimization to obtain improved
parameters of the signal's spectral density.
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Original and optimized signals
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Fig. 2 — Analysis of signal changes after optimization
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Fig. 3 — Dynamics of signal amplitude changes during iterations

0,92,1,13
Table 2 shows how the signal parameters and the 3 0,83, 0,61, 0,75, 9,30
gradient norm changed with each iteration. The gradient 0,83, 1,02
norm is a characteristic that indicates the change in the 4 0,75, 0,55, 0,67, 8,35
function of the gradient vector length at a specific point. 0,75, 0,92
In our case, the gradient norm considers how close the
signal parameter optimization algorithm is to the given n 0,10, 0,01, 0,20, <1.23
minimum point € [9, 11]. 0,15, 0,01
Table 2 Table 3
Dynamics of signal parameters on gradient norms by Optimization of signal parameters by the gradient
iterations method
Iteration Signal parameters Gradient iter | 11 21 31 4]l 5] 6] 7] 8] 9] 1 1
on current | norm atio 0 0
iteration (first 5 n 0
values, total 500 Am | 1l ol 2l ol 2] 2l ol 2] 2] 2
points) plit |, |,
0 1,13, 0.85, 1,05, 12,75 ude 12191118l 0l13/9]1]4]|2
1,13,1,38....
1 1,02, 0,76, 0,94, 11,50 The optimization process using the gradient method
1,02,1,25 can effectively adjust the signal amplitude, improving the
2 0,92, 0,68, 0,84, 10,35 level of noise immunity. Changes in amplitude at each
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iteration indicate the process of approaching the optimal
level, which helps achieve better characteristics and
stability under various interference conditions. Such
results are achieved by using the gradient of the objective
function, which indicates the direction and magnitude of
the necessary changes to improve the signal ensemble.
The gradient shows how quickly and in which direction
the signal ensemble parameters need to be changed to
minimize the deviation from the target function value. As
a result, the amplitude of the signal ensemble is gradually
adjusted (improved) during the iterations, approaching the
optimal value, which overall contributes to ensuring a
high level of noise immunity [11].

Let’s consider a situation where the objective
function fix) evaluates the distance between the

parameter vectors of the spectral density x and the target

0,7
0.7 and the

2
Xppbusr = gi Then, the gradient of this function will be

density x;grger = robustness density

as follows:

— ﬂf{ﬂf] _ _E{XL arg e _xL]
Vi) = (ﬂf{xt]] B (—E{I::pajstr_x:] ] ©

Let’s determine the condition for the experiment that
the gradient descent method optimizes with a step
n = 0,1then the change in parameters (for example, signal
amplitude and noise level) will take the form (Table 4).

At each step of the iteration, for example, the signal
amplitude (parameter 1) will change according to the
formula (as well as other parameters) [12]:

Apew = and - ??Ff{ﬂnfd]
(4)
where 1 — the step coefficient, the learning rate,
determines the change of the parameter at each step.

Table 4
Dynamics of changes in signal parameters during
optimization
Itera | Parameter 1 | Parameter 2
tion (signal (noise level)
amplitude)
0 1 1
1 0,5 0,6
2 0,25 0,35
3 0,125 0,2
4 0,0625 0,1
5 0, 03125 0,05
As calculations show, under this condition,

parameter 1 is halved at each iteration, which indicates a
stable optimization process aimed at reducing the
amplitude to achieve signal stability. And parameter 2,
decreases at different stages, is not so stable, which
indicates a more complex optimization process, where the
noise level decreases depending on other factors, such as

frequency components or other parameters of the signal
(Fig. 4).

Change in Parameters During Optimization

10 =~ Parameter 1 (signal amplitude}
Parameter 2 (noise level)

02

0.0

0 1 2 3 4 5
tteration

Fig. 4 — Iterative optimization of signal parameters
(gradient method)

The original signal is a sine wave with a frequency
between 0 and 1. The optimized signal can be obtained by
applying gradient descent to the original signal. The
algorithm of the gradient descent method is built in such a
way that it «tries to find» such a signal amplitude that will
minimize the difference between the original signal and
noise (reduce the effect of noise on the signal). The
amplitude of the signal changes significantly in the first
few iterations (from 1 to 0.5). As the iterations continue,
the signal amplitude stabilizes (0.0625), which indicates
the effectiveness of the optimization method.

The effectiveness of the gradient descent method
depends on the size of the gradient descent step #. If the

step n is too small, the method may be inefficient, as it

will require many iterations to achieve the desired result.
If the step nis too large, the method may be unstable

because it may «jump» through the minimum point of the
objective function.

In this experimental case, at step n = 0.1, it took
only 5 iterations to achieve the desired result, and the
method improved the parameters by 10% at each
iteration.

The gradient descent method is an effective way to
optimize the spectral density of a signal, as it allows
achieving the desired result in a small number of
iterations. As a result of applying the method, the
synthesized signals acquired appropriate ensemble
properties and noise immunity characteristics, with the
amplitude values of the signals increasing, which
provided a higher level of noise immunity. The
calculations show that choosing the optimal step size for
gradient descent allows efficiently achieving the
necessary experimental results.

Another effective method of optimization with
constraints, using approximation by linear functions, is
Newton's method. It can also be used for complex
ensembles of synthesized signals. This method is effective
for objective functions with a non-smooth graph, which
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are often encountered in practice in signal synthesis [10,
11, 13]. Newton's method uses a quadratic approximation
of the objective function f{x) at the current evaluation

point x;, [13]:

Q(x) = fxp) + Ff (xp) (x — x3) +f{x -
x) Hrg) (o — x3)
(%)

where f(x;) — the value of the objective function at
a point x;
FF(x; ) the gradient of the objective function
at a point x;

H{x;) — hessian — the matrix of the second
partial derivatives of the function at the point x;,

Quadratic approximation allows quickly finding the
directions of the steepest descent of the objective
function, making the Newton method effective for fast
convergence in regions where quadratic approximation is
truly effective [11]. By using second-order derivatives in
the calculations, the Newton method provides a more
accurate approximation to the minimum of the objective
function compared to methods that use first-order
derivatives.

Optimization using the Newton method is presented
in Fig. 5 and Table 5.

Parameter Optimization Using Newton's Method

1.5 7

1.0+

0.5

0.0 1

Signal Amplitude

~1.04

® Observed Data
=== Original Signal
—— Optimized Signal (Newton Method)

X (Time or Angle in Radians)

Fig. 5 — Optimization of signal parameters according to Newton's method

In Fig. 5 shows the optimization of the signal
parameters by Newton's method, namely, reducing the
error and improving the fit to the observed data. The
observed data (black dots) are approximated by the
original sinusoidal signal (blue dashed line) and the
optimized signal (red solid line). Newton's method is an
effective tool for optimizing the parameters of signal
ensembles, in particular the frequency, in order to achieve
the maximum fit to the data. The process begins with an
initial assumption about the frequency, which in this
example is set to 0.5. According to Newton's method, the
derivative of the frequency is used to find a new value
that is more optimal and better corresponds to the given
data.

At each iteration step, Newton's method calculates a
new frequency value, reducing the error. After the first
iteration, the new frequency value is 0.45, with an error of
0.075. The process of iterations continues until the
accuracy specified by the experiment is reached. In this
example, optimization by Newton's method is achieved in
10 iterations, reducing the error from 0.1 to 0.0027. The
results of the calculations are presented in the Table. 5.

Table 5.
Results of calculations by Newton's method
It Frequency The
eration calculation
error
0 0,5 01
1 0,45 0,075
2 0,475 0,05625
3 0,46875 0‘5?42187
4 0,46484375 0,03125
5 0,462953125 02‘222656
6 0,4(;1914062 0,015625
7 0,461230468 0,010742
75 1875
8 0,460815429 0,006835
6875 9375
9 0,460571289 0,004296
0625 875
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1 0,460418701
0 171875

0,002685
546875

Thus, the use of the Newton method allows for a
significant reduction in error from 10% to 0.027%, which
corresponds to an overall error reduction of 99%. This
demonstrates the high efficiency of the Newton method
for optimizing the parameters of complex signal
ensembles. The high accuracy of this method is ensured
by the use of second-order derivatives, which provide
more precise approximations to the minimum of the
objective function compared to methods that use first-
order derivatives.

Additionally, the Newton method shows high
performance in cases where the objective function is
smooth. This makes the Newton method particularly
useful for tasks requiring fast and accurate optimization of
parameters, such as tuning the frequency, phase, and
amplitude of signals in complex and dynamic radio
environments.

Newton's method is an effective way to optimize the
parameters of ensembles of complex signals in problems
with high accuracy. However, this method may be less
efficient for the objective function with a smooth graph,
as it requires an increase in the number of iterations to
achieve the optimal result. To solve such practical
problems, it is necessary to consider the use of alternative

optimization methods, such as the gradient method or the
Nelder-Mead method.

However, Newton's method has a number of
disadvantages. It is sensitive to the choice of the initial
value of x0, which can affect the optimization results. If
the initial value is far from optimal, the method may
converge slowly or not at all. Therefore, when using this
method, it is important to choose an initial value
(solution) that is close to the optimal one. This is not
always appropriate. In addition, Newton's method can be
slow for high-dimensional objective functions due to the
need to calculate and invert the Hessian, which is
computationally challenging. In cases where there is a
need to take into account the above parameters, it is more
reasonable to use methods based on gradients or Nelder-
Mead.

It should also be noted that Newton's method may be
less efficient in the case of functions with multiple local
minima, where it may stop at a local minimum instead of
a global one. This limits its application in problems with
high complexity of the topography of the objective
function.

A comparison of the effectiveness of the Nelder-
Mead, gradient descent, and Newton methods for
optimizing complex signal ensembles, highlighting the
main advantages and disadvantages of each method, is
presented in the table. 6.

Table 6
Comparison of the effectiveness of the gradient method and the Nelder-Mead method

Properties Method of Nelder - Mead | Method based on gradients Newton's method

Strengths 1. Does not 1. Effective  for | 1. It has the ability to quickly
require the objective functions with | achieve accurate parameters
calculation of the a non-smooth graph 2. Effective for objective
gradient of the 2. Has the ability | functions with a non-smooth
objective to build a fast algorithm | graph
function for  high-dimensional | 3. When calculating,
2. Has high objective functions. derivatives of the second
resistance to 3. Flexibility  in | order are used for accuracy
noise and adjusting the learning
measurement speed, which helps to
errors. avoid «falling into»
3. Works local minima  and
well when there ensures faster
is limited achievement of the
information about general («globaly)
the target minimum.
function.

Weaknesses | 1. May be ineffective for | 1. Requires the calculation of |{1. The method requires
objective functions with a | the gradient of the objective |calculation and inversion of
non-smooth graph. function, which necessitates |the Hessian
2. Can be slow for high- | complex computation |2. Is sensitive to the choice
dimensional objective | algorithms. of initial values
functions. 2. Is sensitive to the choice of
3. May get «stuck» in | the initial point xo, which can
local minima for complex | affect optimization results.
functions. 3. Requires the adjustment of

the step size #, which can impact
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the stability and
convergence.

speed of

The Nelder-Mead method is more reasonable for use
in cases where the objective function has a smooth graph
and noise and disturbances become a significant problem
(which is usually the case in practice). This method does
not require the calculation of the gradient of the objective
function, which is a significant advantage, because the
calculation of the gradient is difficult or expensive. In
addition, the Nelder-Mead method is based on direct
search and use of the simplex, which provides good
resistance to interference and can work effectively under
conditions of limited information about the objective
function. This makes it optimal for solving problems
where the objective function may have multiple local
minima or be difficult to analyze due to various
interferences and obstacles.

Gradient methods can be effective when the graph of
the objective function is not smooth, and disturbances do
not significantly affect the process. Gradient methods,
such as gradient descent, can quickly converge to the
optimal solution, especially for high-dimensional
objective functions. An important condition for the
effectiveness of gradient methods is the condition for
calculating the gradient. That is, it is always necessary to
consider the situation to what extent it is costly or not
costly. The use of gradient methods is the optimal
solution for problems with a large humber of parameters,
since they can be adapted to quickly converge to the
minimum of the objective function.

5 RESULTS

As shown in fig. 1-3 and in table. 2-3, the gradient
method proves its effectiveness in adjusting the signal
amplitude and noise level, namely according to the
characteristics:

1. Increasing signal similarity. Fig. 2 shows that the
initial amplitude of the signal varies significantly during
the first few iterations and then stabilizes at a value of
0.0625. This indicates the effectiveness of the gradient
descent method in reducing the influence of interference
on the signal.

2. Reduction of signal amplitude. In the table 4
shows that the signal amplitude is halved at each iteration,
demonstrating a stable optimization process aimed at
achieving signal stability.

3. Reduction of noise level. Parameter 2 (noise
level) decreases at different stages of the optimization,
indicating a more complex optimization process where
the noise level is reduced depending on other factors, such
as frequency components or other signal parameters (Fig.
3).

As shown in fig. 4-5 and in table. 6, Newton's
method also proves its high efficiency in the tasks of
optimizing signal parameters. Namely, in fig. 5, it can be
seen that Newton's method significantly reduces the error
and improves the fit to the observed data. The error

decreases from 0.1 to 0.0027 in 10 iterations, which
corresponds to a 99% error reduction.

In the table 6 shows how the frequency of the signal
changes at each iteration step, reducing the error. After
the first iteration, the new frequency value is 0.45, and the
iteration process continues until the specified accuracy is
reached.

Due to the use of second-order derivatives, Newton's
method provides a more accurate approximation to the
minimum of the objective function compared to methods
that use first-order derivatives.

The further development of this scientific research is
the integration of optimization methods with innovative
technologies of machine learning and artificial
intelligence. The use of machine learning algorithms for
preliminary data analysis and selection of optimal initial
(«starting») parameters for optimization algorithms, such
as gradient descent and Newton's method, can
significantly reduce the time to reach optimal results and
increase their accuracy.

Another promising direction of research is the
development of hybrid optimization methods, which
combine the advantages of gradient methods and
evolutionary search methods (Nelder-Mead method). This
approach will make it possible to develop algorithms
capable of effectively solving problems with a large
number of parameters and different types of objective
functions. The use of hybrid methods can significantly
increase the efficiency of telecommunication systems,
radar systems and other industries where high accuracy
and reliability of operation are critical.
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3ACTOCYBAHHS JIHIAHUX
AIIPOKCUMAIIM A ONTUMIBAILIILI
IAPAMETPIB AHCAMB.IIB CKJIAJTHUX

CUT'HAJIIB 3A TPAJIEHTHUM METOJIOM I
METOJAOM HBIOTOHA

B crarri gmocmimkeHO e(EKTHBHICTH METOJIB
TPami€eHTHOTO CITycKy Ta HploToOHa uis omTuMmizamii
mapaMeTpiB aHCaMOJIB CKJIQJIHUX CHUTHaIiB. Po3pobiieHo
Ta BIPOBAPKCHO AJITOPUTMH, LIO HiJBHIIYIOTH TOYHICTH
HaJIAIITyBaHHSA nmapameTpiB Ta 3a0e3MeuyIoTh
OOTpYHTOBaHY OITHMI3allil0 CIEKTPAIbHUX, YACOBUX 1
CTaTUCTUYHHUX XapaKTepUCTUK CHUrHadiB. E¢eKkTuBHICTH

3aCTOCYBaHHA METOJIB T ATBEPAKEHO
EKCIIEPUMEHTAJIbHAM IIJIIXOM Ha NPUKIaAi 3MEHIICHHS
NMOXMOKM Ta TMIABUILEHHS pIiBHSA  3aBaJIOCTIHKOCTI.

Otpumani pe3yiabTaTH OOIPYHTOBYIOTH YAOCKOHAJICHHS
mapaMeTpiB  CKJIIQAHAX  CHTHANIB, MO0 JIOBOJWTH
e(pEeKTUBHICTP  BHUKOPHCTAaHHSI Ui  OE3MPOBOJOBUX
TEIEKOMYHIKAIliIfHIX CHCTeM 3 METOK 3a0e3redeHHs
cTabinpHOI Ta HamiHOI POOOTH B yMOBaxX IMHAMIYHHX
3MiH CepeIOBHINA Ta BUCOKOTO PiBHS 3aBal.

VY crarTi HpoBeAEHO MOPIBHSHHA MaTeMaTHYHUX
METOMIB ONTHMI3allii, a came TIpaJieHTHOr0 METony i
MeToy HproTOHA, 3aIpOMOHOBAHO MaTEMAaTHYHI MOJIENI 1
moOy/IOBAHO aITOPUTMH, SKi EMIIPHYHO JIOBOIATH
e(eKTUBHICTD 3aCTOCYBaHHS JIOCITIIDKEHUX
MaTeMaTUYHUX METO/IB B BU3HAYEHiil HayKOBiii 00yacTi —
JUIL  ONTHMI3allii TMapaMeTpiB aHCaMOJIB  CKIaJHUX
curHamiB. Y  HaykoBux poborax [1-6, 9, 12]
MIPEJCTAaBICHO ANTOPUTMH, 332 TPaIi€HTHHAM METOJOM Ta
MeTogoM HpIOTOHA, ajie B HUX HE PO3TIIIHYTO JETABHO
MOPIBHANBHUHM aHalli3 e(QEeKTHBHOCTI ITMX METOIIB LI
onTUMI3aIil MmapaMeTpiB aHCaMOIIB CKJIAAHUX CHUTHAIIB
JUIs peajtizanii B pi3HUX HayKOBHUX 1 MPAKTUYHKX 3a]a4ax.
EdexTuBHiCTh 3amponoOHOBaHMX B CTAaTTi AJTrOPUTMIB
MIATBEPIXKEHO  EKCIIEPUMEHTAIBHUM  LUISIXOM,  ILIO
JIO3BOJIMJIO  JIOCSITHYTH ~ 3MEHIICHHS  TOXHMOKM  Ta
MOKpAILeHHSI  XapakTepUCTUK  aHCaMOJIB  CKJIAJHUX
CUTHAIIIB.

B pesymbraTi €KCHEPUMEHTIB 3 BHKOPHUCTAHHSIM
METOJIB TpagieHTHOrOo CcHycky T1a HpioToHa OyIo
JNOCATHYTO  3HAYHOTO  3MCHIICHHS  IMOXUOKH  Ta
MTOKpAIIeHHs cTaOimbHOCTI curHamiB. Meron HrproToHa
3HM3HB MOoXUOKy 3 0,1 10 0,0027, 00TPYHTOBYIOUH BHCOKY
TOYHICTh HAJAIITYBAaHHS MNapaMmeTpiB curHaty. Meron
IPaJiEHTHOrO CIyCKY 3a0e3MeYuB CTaOUIbHE 3HIDKCHHS
HOpMH TpafieHTta 3 12,75 no menm Hix 1,23, edhekTuBHO
3MEHIIYIOYM  pIiBEHb  3aBaj, TOOTO  MIiJABHILYIOYH
3aBaIOCTIMKICTB.

KurouoBi coBa: miHiiHI anmpokcumaiiii, aHcamOi
CKIIATHUX CHUTHANIB, TPAJi€HTHAH METOd, METOX
Hrrorona, Hopma rpajienTy, QyHKIS T, ONTHUMI3aLis
mapameTpiB CHUTHAJIB, iTepaniiHui aIrOPUTM,
3aBaJIOCTIHKICTb.
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