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A heuristic approach to solving the minimum vertex cover problem
using guar anteed predictions

This paper presents a heuristic approach to soltirgminimum vertex cover problem with guarantessdiptions,
which can be effectively implemented on the mal&@latforms because of the high degree of th&uoson-level
parallelism. The C++ program to compute and disptag figures of the test results for each experinveas written.
According to the results this approach is optimif@dthe very dense graphs.
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I ntroduction It is much easier to expand and manage such systbes

The problem of finding the minimum vertex cover foglealing with an algorithm that has an improved time
a random graph was one of the first tasks whichewetomplexity.
called NP-complete and denoted by NPC [1]. Thereewe
many attempts of developing the exact algorithmsclwvh Review of recent research and publications
would allow the problem be solved in polynomial ¢éim In the recent years the efforts of finding an
However, both in theory and practice, it is not kedwn a asymptotically optimal algorithm for solving the mithum
fast method which uses a reasonable amount of fame vertex cover problem were done taking into accdtst
computing the solution. There are only approxinatigarameterized complexity [6]. The main idea behine
algorithms which are optimal up to a constant faf2h In  parameterized complexity is that it is possibleckange
other words, they return a vertex cover which hasraber the structure of the input parameters to get tretimal
of vertices no more than k times bigger in compariwith  tractability. Hence, on the one hand there is asbigof the
the minimum cover possible (k is a constant facfothe input values and on the other hand there is a wadiety
particular approximation algorithm). of parameters which can affect the overall comjnat

Over the last few decades this problem has begsinplexity of the algorithm being analyzed. Thipagmch
studied with great attention. It is connected vitte fact makes it possible to form the more flexible clasation of
that the minimum vertex cover problem is used imynathe NP-hard problems in comparison with the cladsic
important and contemporary fields of science anflethodology when complexity is measured in termthef
technology. In particular, it is widely used in anput size only.
telecommunication system monitoring [3] by means of |f it is true that P NP, there must exist many natural
which the areas with slow performance and/or dashagsroblems that require exponential or worse runrting.
parts of a network can be detected. The minimurtexer However, using a parameterized algorithm allowstas
cover algorithms, which provide mechanisms and m@én solve such problems efficiently for any input séwvalues
detection and analysis of the regions of similaiitside a provided that some parameter k is fixed. In otherds, if
DNA and relationships between the complete genoniere exist some function f(k) that affects theostym
sequences [4], play an important role in the bimalg complexity and there is a k-parameter that hadadively
sequence alignment (protein, DNA, RNA etc.). Sugimall value, there is an algorithm which solves the
algorithms are also crucial in resolving conflia@é the problems in O(f(k) x ™) time, where n is a number of
many problems of computational biology [5]. the input values.

The importance of this research can be easily bgen  Problems that have fixed k-parameter are called
examining the coordination of the shared resouicébe parameterized problems and belonged to the contplexi
heterogeneous high performance computing systemisiss FPT (fixed-parameter tractable). The vertexec
where the choice of the effective and efficient moelt of problem is said to be in this class too. Quiterayltime the
solving the minimum vertex cover problem plays @lc optimized parameterized algorithms are developed an
role in providing stability in the high intensityask investigated. At the present time one of the qustkeown
management environment and obtaining the most caggorithms solves this problem in O(kn x 1.2%38Bme
efficient level of performance in the distributegstems. [7], where n is a number of vertices of a randoapgrand

k is the size of the vertex cover.
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The approximation algorithms are often used for The proposed algorithm consists of two differentga
solving the optimization problems. One of the mog¢ihe main procedure A that has 11 basic steps and an
important properties of the approximation algoritlsran additional procedure B that checks a given graphtie
approximation factor. It is also called a relativeresence of the leaf vertices (the vertices wittrele one,

performance guarantee and can be defined as: i.e. they are the endpoints of exactly one edge).
e Procedure A. Basic steps for solving the
p(i) > max (f(i) / OPT; OPT/ f(i)), (1) minimum vertex cover problem:

Step 1. Given a graph G(V, E), an initial nonlinear
where OPT is an optimal solution for the problestamce equations formed as:
i and f(i) is the cost of the solution of an appnoation

algorithm. f,(xx,)=0, @)

The most advanced method up to this day was
discussed in the work [8] where it was proven tiatre Where X X; are such pairs of the vertices that form the full
exist an algorithm with the approximation factoualto cqver of the graph.

Step 2. The equation (2) is then processed by the

@ - 6 m )). Such algorithm is said to be an p(i)Iorocedure B. If this procedure returns the secaresiple
_ _g _ solution (all possible solutions are stated in phecedure
approximation algorithm. B description), then the minimum vertex cover vk

Among the weakest sides of the approaches to gplvigund and it will be represented by the full setvafues

the minimum vertex cover pr_oblem IS the_ lack ogation R! which will be returned by both procedures. Therefor
to the problem of parallelization of operationsrhgans of = 2

which the efficiency of execution in a distribute@rocedure A will be finished. However, if proceduge

environment could be increased. Many of the knowfi!ds the first or the third possible result, weishgo to

algorithms have too high value of the fixed parametth® nextstep. _

which reduces performance of the system. Step 3. Depending on the results that had been
This article treats and summarizes an approach gt@ined on the previous step, in the equationof2jts

solving the minimum vertex cover problem for thedam derivativef !(X X;) =0 which contain the partial set of
graphs that is optimal for using in the distributed . . )

environments under high load conditions. The mathe vertex cover the terS, = XX, with the maximum
purpose is to create an algorithm with improveﬁj

+ i '
complexity bounds in comparison with the existingequency h' hm (maximum degree of the graph's

methods. vertices) is formed along with such three variables
X =0x,=0; x =1x,=0; x =0,x,=1.
An algorithm with the guar anteed predictions Then move on to the next step.

The term “arbitrary undirected graph” is us_ed h‘mre Step 4. The variable z is then assigned the valde o
the sake of the problem formalization. It implies arhe first pair of variablesx, =0,x, =0 is substituted
ordered pair G(V, E) where V is a set of verticed & is a . h . h . defined
set of edges or links. An edge in the undirecteaplyris into the  current equ_atlon that is  now §|ne
represented by the unordered pair (U, VE. The edges in asf; (X X;) = 0. The variablesx; and X, are added into

such a graph have no orientation. h il R and th L db
The vertex covers of the arbitrary undirected graph € partial resultx; and the new equation is processed by

the subsets of verticdd’ [V such that each edge (u, V);he procedure B. If we get the second possibletisolu

[] he followi ) 0OV’ vV’ rom the procedure B, then the minimum vertex covir
G meets the following requirementsrLIV ", v * be found - it will be represented by the full set o
The minimum vertex cover problem is to find a verte

cover of smallest possible size. The exact algunsttior valuesRZI . After saving this result, move on to the next
solving the minimum vertex cover have the tim&teP: _ _

complexity that is generally increased with the bemof Step 5. Depending on the result obtained from the
vertices in a graph. In this paper we focus onefective Procedure B on the previous step, an equation
approximation algorithm with the guaranteed prediet  f,(XxX;) =0 (or fl(x X;) = 0) along with its partial
which uses heuristic guaranteed predictions, hasaved i

|Oca| Searching ab|||ty and gives near to Opt”'rmLIBon vertex cover and a” fU” sets Of Valu&z are added to
The term "prediction” is used to refer to a seegfiations the set M. Then move on to the next step.

by means of which it is possible to choose the most

optimal direction in the algorithm pipeline.
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Step 6. The variable z is assigned the value dh2. the equation (2) that was used on the previous &ep
second pair of variableX, =1,X = 0 is substituted into substituted by the equatidiy (X X;) =0. Then move on

the current equation that has the form bf(x x;) =0. to the step 2 and repeat all the steps until theirmim
All terms of the equation which contain just Oné/ertex coveris _found. . .
) ) ) Let's describe the additional procedure B thatftieno
variable{ Xt} are set to null. After that the equation will beyecuted inside the main operations loop. It isiireql for
: | — ; ; proper handling of the leaf or pendant verticestlof
defined anZ()g Xj) 0. Al vanables{xj} adjacent to graph. When such a vertex is found it is removedhfthe
{Xt} and the variableX , are added into the partialgraph and its adjacent vertex is put into the coReiting
) « ] ) the vertex into the cover implies removing the errand
solutionR, . The new equation is processed by thg js adjacent edges from the graph and movingh®
procedure B. If we get the second possible solutiom next step of the algorithm.
the procedure B, then the minimum vertex cover bl . Additional procedure B. Leaf vertices
found and it will be represented by the full set afhecking:
valuesR! . After saving the result, move on to the next Step 1. Check if the equation (2) has the terms
step. X, X; O f(%X;) with the variables{x,} which occur

Step 7. Depending on the result obtained from t.%%ly once. If it is true, then all the variabfeg } which
procedure B on the previous step, an equation

fl(x X;) =0 (or fl(x X;) = 0) along with its partial are neighbors of tHex,} variables are set to null and

vertex cover and all setR! from the previous steps areddded to the partial solutid®” while the equation (2) is
added to the set M. Then move on to the next step. transformed into le()ﬁ XJ-) =0 with smaller number of

Step 8. The variable z is assigned the value dhg. .
. . . -0 —1i bstituted int variables. Then move on to the next step. Othervitse
third pair of variablesX, = 0, X, =1 is substituted into procedure B is finished.

the]c current Oequation that is gqt a .new fo_rm Step 2. Check if the equatioiﬁz'()ng)=0 has got
as 3()§Xj) = 0. All terms of the equation which contaifye form of identity 0=0. If it is true, then theanial

just one variablgx } are set to null. The equation will besolytion R is transformed into the full solutidR! | i.e.

defined now ag‘a'()g X,—) =0. Al variables {Xj} the vertex cover of the graph is defined by thdaides

from theRzI , therefore, the procedure is finished.
Otherwise, the equation (2) is transformed into
partial squtiorR: . The equation is then processed by thq '()ﬁ X,—) =0 and then we must go to the first step again.

procedure B. If we get the second possible solutiom ‘
the procedure B, then the minimum vertex cover bl

adjacent to{ X,} and the variablex, are added into the

The additional procedure B can yield such three
o i possible results:
found - it will be represented by the full set @lvesR, . 1. The equation (2) is not changed.
Save it and move on to the next step. 2. The equation (2) has got the form of identity 0=0
Step 9. Depending on the result obtained from they ihere is the full solutidR!
i X .
pfrtlncedure_g onf I the pr_e\gousl step,. ha.m eql-Ja:tlon 3. The equation (2) is transformed into the
3(X%;) =0 (or f5(xx;) = 0) along with its partia equationf (X X;) =0 with smaller number of the

vertex cover and all setRl are added to the set M. Then _ . . o
variables and some partial solutiBy) .
move on to the next step.

Step 10. Check if all the equations in the M hawe gh L_ett_’s I?Ok_?r;[ a? exalm_ple ttr? see .hOW we tapply our
the form of identity 0=0, if true — choose among s#ts eurisic algorithm for solving the minimum vertegver

' o o o problem. Table 1 contains all connections of randpaph
{R, } the minimum one, it will be the minimum vertex,ertices.

cover of the given graph. Otherwise, go to the sép.
Step 11. Among the equations

f(%%;) =0, f,(x%;) =0, f3(Xx;) =0 which
haven’t got the form of identity 0=0 choose the attpn
fi (% X;) =0 with the most number of the terms. Then
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Table 1 Table 2 contains the list of all the vertex covarsl
Connections of the vertices of the graph independent sets (cover - set). An independentobet
graph is such a set of vertices no two of which are
Vertex 1: 367812 Vertex 7: 13568 adi
jacent.
Vertex 2: 5691112 Vertex8: 1345679
Vertex3: 1457891011 Vertex9: 2348812
Vertex 4: 368910 Vertex 10: 34911
Vertex5: 23781112 Vertex 11: 23510
Vertex6: 124789 Vertex 12: 1259
Table 2
Vertex coversand independent sets of a given graph
1) 123568910(8) - 471112 (4) mPp456891112(9) - 2710(3)
2) 123456791009 - 81112 (3) 2356891011129 - 247 (3)
3) 12345679119 - 81012 (3) mp456781012(9) - 1911(3)
4) 12345689119 - 71012 (3) mMP4a67891112(09) - 1510(3)
5) 1234568101219 - 7911(3) »BP4678101112(9) - 159(3)
6) 12345789109 - 61112 (3) 356789101219 - 1411(3)
7) 1234578911(9) - 61012 (3) 736789101112 (9) - 145(3)
8) 1234789111219 - 5610(3) B3567891112(09) - 1210(3)
9) 12457891011(9) - 3612(3) Wp6789101112(9) - 124 (3)
10) 13456791112(9) - 2810(3) )2a0456789101112(10) - 23(2)
The equation of the given graph is defined as: X Xo+ Xo X7+ X Xao+ XoXst+ XoXo+ XoXot Xo X1+ Xo X+

XaXe+ XX+ Xy Xy o+ Xs X7+ X Xq 1+
XXzt Xa X+ X X7+ X1 Xgt X1 X 1o+ XoXst+ XoXgt+ XoXot+ + X5 X1+ Xe X7+ XeXot+ XoXq g+ XoXq 4+ X10X11=0. 4)
+ Xo X110+ Xa Xyt XX+ Xo X7+ XaXg+ XaXot XXyt

+ X3X11+ XoXe+ XaXet+ Xy Xot+ XoXi 0+ Xs X7+ XsXat The variablesX; and Xg are included into the partial
+ X5 X1+ X5 X1 o+ X X7+ X Xgt+ XeXot+ X7 Xg+ X Xot cover.
+ Xo X1+ Xo X1+ X10X1,=0. () The second equation is formed taking into accouat t

X3 :0, Xg =1. ASXg =1 it follows thatXl :0, X4 :0, X5 :0,
Table 3 contains the frequencies of the variabl&s=0,X7=0,Xy=0 and the equation (3) is turned into this

presence in the terms of the equation (3). form:
Table 3 XoXi1+ XoXio+ XiX11=0. (5)
Thefrequenciesfor each of the variables of the
equation (3) The partial cover now contains; and the variables
X1, X4, X5, Xg, X7, Xo,

=

Xl 1(2|3| 4] 5/ 6/ 7 8 9 1p11|12 In the same way we form the third equation Vi
h|s|5|8[5 6/ 65 7 714 4 4 =land Xg =0. Provided thaiX; =1 we set the following
variables to nullX; =0, X, =0, X5=0, X¢=0, X;=0, Xg=0,

] ) X,10=0. Hence, the third equation is defined as:
Let’s choose the term with the maximum frequency o

the appropriate variable in the equation (3). ia &xample —
X3Xg is the best matching term with the frequency §2X6+ X2X12=0. ©)
8+7=15. Taking into account this term the equa{®nis
transformed into the system of three equations ezch
which contains the following values of the variabl€Xs
=O,X3=O); ()(3:01X8=1); ()(3:11X8:0)-

The first equation with variable®; =0 andXg =0 is
defined as:

At this stage the partial cover contaiXigand theX;,
X4, Xs, X6, X7, Xo, X10- Since all the terms of the equations
(5) and (6) are included in the equation (4) theg a
excluded from the further analysis.

Table 4 contains the frequencies of the variables
presence in the terms of the equation (4).
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Table 4 3+3=6. Taking into account this term the equatidh i§
Thefrequenciesfor each of the variables of the transformed into the system of three equations ezfch

equation (4) which contains the following pairs of the variabl@§, =0,
X10=0); X9=0,X10=1); Xo=1,X10=0).
Xi|1|2] 4|5 6/ 7 9 1011|12 The first equation with the paiKe =0, X;0 =0 is
h*|3|5|3| 4| 5 3 4 3 3 4 defined as:

. . . X X7+ X X0 + X X7+ Xe X1+ X5 X15=0. 10
Again, we choose the term with the maximum®™ ' ~*"*? ST+ XXt Ao (10)

frequency of the appropriate variable, now it isaled in
the equation (4). It'sX,Xs with the total frequency of X
5+5=10. Taking into account this term the equafénis o
transformed into the system of three equations ezch
which contains the following pairs of the variablés, =0,
X6=0); (X2=0, Xs=1); (X2=1, X=0).

The first equation with the pak,=0, Xs=0 is defined
as:

The second equation is formed taking into acccouoat t
:0, Xlozl. ASX]_o:l it follows thatX4 :0, Xg =0 X]_]_:O
and the equation (7) is turned into this form:

XaX7+ Xo Xyt Xs X7+ XsX15=0. (11)

The third equation is formed with the pa¥, =1,
X10=0. AsXg =1 it follows thatX, =0, X4 =0, X;,=0 and

the equation (7) is turned into this form:
XoXork XoXak XX+ XaXog XoXork XX+ XsXoh quation (7)

+ XoXi0+ XoX12+ X10X1,=0. (") X X4+XeX7+XeX1;=0. (12)

The partial cover now contait&, Xgand the variables Since all the terms of the equations (11) and €2)

X3, Xg from the previous steps. The second equation;ig| ded in the equation (10) they are excludednfrihe
formed taking into account that, =0, Xe =1. AsXs=1 it frther analysis.

follows thatX; =0, X, =0, X7 =0 X7 =0, X, =0 and the The partial cover now contains the variabkes X,

equation (4) is turned into this form: X, Xo Xo X1o.
Let's find again the frequencies of the variables
XsX7+ Xs X1+ XsX1o+ X10X11=0. (8)  presence in the terms of the equation (10). Taldefscts

) ) all the required variables along with their freqcies. The
The variableX, and the variableX;, Xs, X7, Xo are variableXy; has degree one. Hence, it's removed as a leaf

included into the partial solution. vertex.

In the same way we form the third equation with the
pair X, =1, Xs=0. Provided thak,=1 we set the following Table 6
variables to nullXs =0, Xe =0, X3, =0, X3, =0. Hence, the  Thefrequenciesfor each of the variables of the
third equation is defined as: equation (10)
X1X7+X1X12+X2X5+X4X10+X5X7:0. (9) Xi 1 5 71 1112

h*|2]3|2| 1] 2

The partial cover now contaidg and the variableXs
Xy, X11, X12. Since all the terms of the equations (8) and (9) ) ]
are included in the equation (7) they are excludech the  After removingXy, from the coveiXsis set to null and
further analysis. mcl_uded into the partial solution. The equatiorD)(is
Table 5 contains the frequencies of the variablé§fined now as:
presence in the terms of the equation (7).

X1X7+X1X12 =0. (13)
Table 5 ) . )
The frequencies for each of the variables of the Table 7 contains the frequencies of the variables
equation (7) presence in the terms of the equation (13).
Xil1]|4| 5| 7| 9| 101112 Table 7
hx 21 21 3| 21 3| 3| 2| 3 Thefrequenciesfor eaph of thevariables of the
equation (13)
The term with the maximum frequency of the Xil1]7]12
appropriate variable is chosen in the equatioraé7in the hx o111
previous steps, now it E¢X;, with the total frequency of
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X7 is a leaf vertex that must be removed from the Technical Report 05-008, Texas A&M University,
cover. Its adjacent verteX; is put into the solution. The Utrecht, the Netherlands, April 2005.
equation (13) has got the form of identity 0=0. fefiere, 8. George Karakostas. A better approximation réio
the minimum vertex cover of the given graph cossit the vertex cover problem. In ICALP 2005, volume
the variableX3 Xg, X, Xg, Xo, X10, X5, X1. 3580 of LNCS, pages 1043-1050, Lisboa, Portugal,
June 2005. Springer-Verlag Berlin Heidelberg.

Experiment results

The C++ program was written to verify validity dfet
algorithm. It makes it possible to randomly generdte JImcrpowoii C.B., Mounbiii C.B. Ispucruyeckuii
graph instances with a different number of theigestand MOAX0X K PEIIEHHIO 32121 0 HAUMEHLIIEM NOKPBITHH
a variable degree. The results of our algorithmhwif UCNOABL30BAHMEM TapaHTHPOBAHHOIO
guaranteed predictions were compared with thateésal TPOTHO3HPOBAHUSL. B nauHoii crathe OmMMCHIBACTCA
other algorithms for the minimum vertex cover ore thPBPMCTHYCCKMH — MOAXOL K PCIICHMIO  3anadu O
random graphs (algorithm based on greedy-degf&&MEHRIIEM HOKPbITHH ¢ HCII0JIb30BaHUEM
heuristic method and algorithm based on greedyjedge TapaHTHPOBAHHOIO [IpOrHO3UPOBAHHAL. Enaro;[api{

We performed 50 different tests. According to oufbICOKOM  CTENEHM  PacTapajie/MBaHusd — Olepalnrn
analysis, the algorithm with guaranteed predictidas MOABISETCS BO3MOXKHOCTb €ro S(GQEKTHBHOU peannsaiui
much more efficient in Comparison with others. et B CHCTEMax C OOJBIINM KOJMYECTBOM BBHIYMCIUTEIBHBIX
value of average degree gradually increases, otfi@gp- bblia  Hammcawa  mporpaMma  Ha  A3BIKE

algorithms will have a great disadvantage in mespeats. POTPaMMHPOBaHHA Ct+ At [POBCACHHS
OKCIICPUMCHTAJIbHOTO HCCIICOO0BAaHUA. CornacHo
Conclusions pe3ysibTaTam, LlaHHLIﬁ 1oaxoQ Hanboiee OINITUMU3UPOBAH

T JIsL a(POB C BBICOKOHU IINIOTHOCTBIO.
A Iarge number of science and teChnOI(?gY pr.ObIerﬁsJ'llOrEeE)ble CJIOBA. TapaHTUPOBAHHOC NPOTHO3MPOBAHUE,
are proved to be NP-hard problems. The main idéntde .
solving NP-hard problem is to find approximatiohusion. HETHHCHHBIC YPABHCHHA, BUCAIHIC BEPIIIHHI.
This paper considers an effective approximatiomrtigm
with guaranteed predictions which, according to
experiment results, has an improved approximategreke.

Jlictposuii C.B., Mounuii C.B. EBpucTuuHuii miaxia no
BHpilIeHHsA 3aJa4i ©po HaiiMeHIIe MOKPHUTTHA 3
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