Згладжування часової послідовності оцінок параметрів сигналу тестування обмотки статора трифазного асинхронного двигуна

Автор(и)

  • Ольга Михайлівна Ананьєва Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0001-6686-8249
  • Михайло Михайлович Бабаєв Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0003-3553-8786
  • Михайло Георгійович Давиденко Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0001-7255-3059
  • Владислав Вадимович Панченко Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0003-4822-7151

DOI:

https://doi.org/10.18664/ikszt.v30i2.335372

Ключові слова:

часова послідовність, первинна оцінка, вторинна оцінка, згладжування, дисперсія, структурно-детермінована функція

Анотація

Числові дані первинних вимірювань складають основу будь-якої процедури вимірювань, передавання інформації,  діагностики та ін. Ці дані отримуються в суміші зі стаціонарними та імпульсними завадами. Наявність завад призводить  до відхилення результатів вимірювань від їхніх істинних числових величин. Такий фактор ураховують величиною  середньоквадратичного відхилення або її квадратом – дисперсією вимірювань. Дія імпульсних завад призводить до того,  що дисперсії відрізняються від одного результату до іншого. З цієї причини закономірність зміни результатів вимірювань  в часі може в деякі моменти спотворюватись понаднормативними відхиленнями, які, втім, не обумовлені критичним  відхиленням діагностованого параметра, однак можуть бути розпізнані як такі. В роботі обґрунтовано та описано 
математичну процедуру, придатну для згладжування часової послідовності первинних оцінок в умовах наявності їхніх  часових величин з двома дисперсіями. Згладженою закономірністю є зважена сума структурно детермінованих функцій  часу. Виведено співвідношення для розрахунку сукупності вагових коефіцієнтів. Отримано вираз для розрахунку  дисперсій членів згладженої послідовності.

Біографії авторів

Ольга Михайлівна Ананьєва, Український державний університет залізничного транспорту

д.т.н., професор, кафедра автоматики та комп’ютерного телекерування рухом поїздів

Михайло Михайлович Бабаєв, Український державний університет залізничного транспорту

д.т.н., професор, завідувач кафедри, кафедра електроенергетики, електротехніки та електромеханіки

Михайло Георгійович Давиденко, Український державний університет залізничного транспорту

к.т.н., доцент, кафедра електроенергетики, електротехніки та електромеханіки

Владислав Вадимович Панченко, Український державний університет залізничного транспорту

к.т.н., доцент, кафедра електроенергетики, електротехніки та електромеханіки

Посилання

Kendall M. G., Ord J. K. Time series. Oxford University Press. New York. 1990. 312 p. URL : https://document.pub/time-series. html.

Дослідження методів згладжування часових рядів при обробці навігаційних даних руху судна / І. В. Трофименко, В. М. Іваненко, В. М. Федунов, З. Я. Дорофєєва. Вчені записки ТНУ ім. В. І. Вернадського. Серія: Технічні науки. Т. 34 (73), № 2. 2023. С. 209-214. DOI https://doi.org/10.32782/2663-5941/2023.2.2/35.

Kowalski P., Smyk P. Review and comparison of smoothing algorithms for one-dimensional data noise reduction. 2018 International Interdisciplinary PHD Workshop (IIPHDW), Swinouscie, Poland, 2018. Pp. 277-281. DOI https://doi:10.1109/IIPHDW.2018.8388373.

Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon / H. Fang, N. Tian, Y. Wang, M. Zhou, M. Hail. IEEE/CAA Journal of Automatica Sinica. Vol. 5. No 2. March 2018. P. 401-417. DOI https://doi:10.1109/JAS.2017.7510808.

Konatowski S., Kaniewski P., Matoszewski J. Comparison of Estimation Accuracy of EKF, UKF and PF Filters. Annual of Navigation. 2016. № 23. P. 69-86. DOI https://doi:10.1515/aon - 2016 - 0005.

Salhi A., Ghozzi F., Fakhfakh A., Estimation for Motion in Tracking and Detection Objects with Kalman Filter / From the Edited Volume “Dynamics Data Assimilation – Beating the Uncertainties”/ Edited by Dinesh G. Harkut. 2020. DOI https://doi:10.5772/intechopen.92863.

Yousefi S. M., Mohseni S. S., Dehbovid H., Ghaderi R. A Practical Approach to Tracking Estimation Using Object Trajectory Linearization International Journal of Computational Intelligence System. 2024. 17:175. DOI https://doi.org/10.1007/s44196-024-00579-5.

Implicit Particle Filtering via a Bank of Nonlinear Kalman Filters / I. Ascari, M. A. Haile, X. Tu, H. Fang. arXiv: 2025.04521v [eess. SY] 9 May 2022. DOI https:10.48550/ arXiv.2205.04521.

High-Precision Localization Tracking and Motion State Estimation on Ground-Based Moving Target Utilizing Unmanned Aerial Vehicle High-Altitude Reconnaissance / X. Zhou, W. Jia, R. He, W. Sun. Remote Sensing. 2025. 17. 735. DOI https: //doi.org/10.3390/rs17050735.

Synthesis of a device for anti-jamming reception of signals of tonal rail circuits on the background of additive five-component interference / S. Panchenko at all. Eastern-European Journal of Enterprise Technologies. 2021. Vol. 3. № 9 (111). P. 94-102. DOI https:10.15587/1729-4061.235835.

Синтез пристрою оцінювання параметрів синусоїдного сигналу, адитивно змішаного з одиночною імпульсною завадою / О. М. Ананьєва, М. М. Бабаєв, М. Г. Давиденко, В. В. Панченко. Інформаційно-керуючі системи на залізничному транспорті. 2024. № 3. С. 25-32. DOI https://doi.org/10.18664/ikszt.v29i3. 313625.

##submission.downloads##

Опубліковано

2025-08-20